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Parametric Excitation of Subharmonic Oscillations 
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Subharmonic oscillations of order one-half for a single-degree-of-freedom system 
with quadratic, cubic, and quartic nonlinearities under parametric excitation are 
investigated. Two approximate methods (multiple scales and generalized 
synchronization) are used for comparison. The modulation equations (reduced 
equations) of the amplitudes and the phases are obtained. Steady-state solutions 
(periodic solutions) and their stability are determined. Numerical solutions are 
carried out, and graphical representations of the results are presented and 
discussed. The results obtained by the two methods are in excellent agreement. 

1. I N T R O D U C T I O N  

Excitations produced by time-dependent parameters in the governing 
equations are called parametric excitations. In contrast with the case of 
external excitations, which lead to inhomogeneous differential equations with 
constant or slowly varying coefficients, parametric excitations lead to homo- 
geneous differential equations with rapidly varying coefficients, usually peri- 
odic ones. 

The problem of parametric excitation arises in many branches of physics 
and engineering. For a comprehensive review of the response of single- 
and multi-degree-of-freedom systems to parametric excitations, see Evan- 
Iwanowski (1976), Nayfeh and Mook (1979), Ibrahim (1985), Schmidt and 
Tondl (1986), Zavodney (1987), Balbi (1973), Haag (1962), Elnaggar and 
Hamd-Allah (1982), Elnaggar (1985), Elnaggar and EI-Basyouny (1992, 
1993, 1995), and Elnaggar and El-Diriny (1995). 

Zavodney and Nayfeh (1988), using the method of multiple scales, 
studied the response of a single-degree-of-freedom system with quadratic 
and cubic nonlinearities to a fundamental parametric resonance. Zavodney 
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et al. (1989), using the same method, studied the case of a principal paramet- 
ric excitation. 

In this paper, we investigate subharmonic oscillations of order one-half 
(principal parametric resonance) for a single-degree-of-freedom system with 
quadratic, cubic, and quartic nonlinearities under a parametric excitation. The 
quadratic term may be due to curvature or an asymmetric material nonlinearity, 
whereas the cubic and quartic terms may be due to mid-plane stretching or 
a symmetric material nonlinearity. The parametric term may be due to a 
harmonic axial load. Two approximate methods are used to find two first- 
order ordinary differential equations describing the modulation of the ampli- 
tudes and the phases. Steady-state solutions (periodic solutions) and their 
stability are determined. Numerical calculations are carried out. The results 
obtained by the two methods are in excellent agreement. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

Subharmonic oscillations (periodic oscillations) of order one-half for a 
single-degree-of-freedom system with viscous damping and quadratic, cubic 
and quartic nonlinearities under a parametric excitation can be modeled by 
a second-order ordinary differential equation of the form 

// + o~u + e(2ixu + a l u  z + or2 u3 -t- or3 u4 --{- (/4U COS l-It) = 0 (1) 

where the dots indicate differentiation with respect to time t, e is a small 
parameter, co o is the linear natural frequency, Ix is the coefficient of viscous 
damping, oq, az, and a3 are the coefficients of the nonlinear terms, and a4 and 
1"1 are the amplitude and frequency of the parametric excitation, respectively. 

3. T H E  M E T H O D  OF M U L T I P L E  SCALES 

A first-order uniform solution of equation (1) is sought by using the 
method of multiple scales (Nayfeh and Mook, 1979) in the form 

u(t; e) = uo(To, Tl) + eUl(T0, Tt) + �9 �9 �9 (2) 

where To = t is a fast scale associated with changes occurring at the frequen- 
cies ~o0 and D~ and Tl = et is a slow scale associated with modulations in 
the amplitude and the phase caused by the nonlinearity, damping, and oscilla- 
tion. In terms of the T~, the time derivatives become 

d d 2 
dt Do + eDl + " ' "  dt  z D~ + 2eDoDL + " ' '  (3) 
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where D, = d/OT,. Substituting equations (2) and (3) into equation (1) and 
equating coefficients of like powers of r one obtains 

D~uo + ~o2u0 = 0 (4) 

D~ut + o~u, = - 2 D o D l u  o - 2~xDouo - a,Uo 2 - a2u 3 (5) 

- or3 u4 - a4u0 cos l'lr0 

The solution of equation (4) can be expressed in the complex form 

Uo = A(T1)e i~176176 + g ( T O e  -i~~176 (6) 

where X is the complex conjugate of A. Then, equation (5) becomes 

DZul + to2ux = -[2ie%(D1A + p.A) + 3a2A2g]e i~~176 

- (al  + 4a3 AA)AZe zig~176 

1 ot4Aei(fl+,ao)T 0 (7) - a2A3e3i~oro - a3A4e4i~oro - 

1 
- -ot~c~e i~a-~)ro - 2AA(a~ + 3axAA) + c.c. 

2 

where c.c. stands for the complex conjugate of the preceding terms. Any 
particular solution of equation (7) contains secular terms and small-divisor 
terms when f l  ~ 2o00. To treat this case, one introduces a detuning parameter 
a to convert the small-divisor terms into secular terms according to 

1~ = 2oo o + ecr (8) 

Eliminating the terms in equation (7) that produce secular terms in uz yields 

1 oL~ei~rl = 0 (9) 2io0o(DiA + ~A )  + 3ot2AZA + 

Consequently, the solution of equation (7) is 

A 2 _ ot2 A3 e3iu,oTo 
2AA (al + 3a3AA) + - - ( a l  + 4cl3AA)e 2i~~176 + 8(o0 2 

u ,  - o0 - 30,  - -  

a4A ~ e 4i~~176 + e i(Ft+~ + c.c .  (10)  
15o02 2~(f~ + 2o00) 

+ 

Substituting the polar form 

1 
A = ~ a e  f~ ( 1 1 )  
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into equation (9), where a and 13 are real, and separating real and imaginary  
parts yields 

ct4a 
a' + Ixa = - - -  sin ~/ (12) 

4600 

_ 3~2 a3 ot4a 
1 a(tr - ~/)  - -  - - -  cos V (13) 
2 8too 4too 

where  

~/ = trTl - 213 (14) 

Substituting equations (6) and (10) into equation (2) yields the approxi- 
mate solution 

u = a cos(toot + 13) + 
-aZ(4oq  + 3ot3a 2) (oq + ot3aZ)a 2 

8too z + 6to~ 

• + 213) 

Or2 a3 .~ Or3 a4 
+ 32to~ cosl.JtOot + 313) + ~ cos(4toot + 413) 

cqa cos[ ( l I  + too)t + 13]~ + O(• z) 
+ 21)(fJ + 2tOo) 

(15) 
J 

For steady-state solutions, a '  = ~/' = 0, and equations (12) and (13) 
become  

- -  o t  4a 
- - -  sin ~/ (16) 

l u z -  4too 

1 3ot2a 3 tlaa 
- a t r  - cos -/ (17) 
2 8000 4too 

Equations (16) and (17) show that there are two possibilities: a = 0 or a q: 
0. When  a :~ 0. 

Ot 4 
p, = - - -  sin ,/ (18) 

4o) o 

1 3~2a 2 et4 
- tr - cos ~ (19) 
2 8too 4too 
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Squaring equations (18) and (19) and adding the results gives the frequency- 
response equation 

__ _ _  0 .2 13l. 2 9a2 a 4 3~ a 2 + }.1, 2 "]- - -  -- 0 (20) 
64t02 8tO0 4 16tO 2 

which, upon solving for a, yields 

where 

a = [~ --- (~2 + .q)l/2]m (21) 

where 

Letting 

1 a ~ e i . r  , = 0 2it%(A' + p.A) + 

A = (B + ib)e i"rt12 (24) 

in equation (23), where B and b are real, and separating real and imaginary 
parts, one obtains 

B' + p.B + Fib = 0 (25) 

b' + p.b + F2B = 0 (26) 

F~ = - + (27) 

0. ot 4 
F 2 - 

2 4O~o 

Equations (25) and (26) admit solutions of the form 

(B, b) = (B, [~)e ~rl 

where/~ and/~ are arbitrary constants and 

k = - ~ _ _ _ ~  

Consequently, a trivial solution is unstable if and only if 

FIF2 > ~2 

(28) 

(29) 

(30) 

(31) 

(23) 

To determine the stability of the trivial solutions, one investigates the 
solutions of the linearized form of equation (9); that is, 

40)00" 
- 3et2' "q = et~ - 16to~l~ 2 - 4to~ "2) (22) 
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and otherwise it is stable. 
To determine the stability of the nontrivial solutions, one lets 

a = ao + a l (TO,  ~/ = %10 + ~/l(Tl) (32) 

where a0 and "/o correspond to a nontrivial solution and al and ~/l are perturba- 
tions which are assumed to be small compared with a0 and "Y0. Substituting 
equation (32) into equations (12) and (13) and linearizing the resulting equa- 
tions, one obtains 

a~ + ~/iF1 = 0 (33) 

~/{ + 21x~/t + alF2 = 0 (34) 

where 

F1 = ao -~ 8~o0 ] (35) 

3 ct 2ao 
F 2 - (36) 

2to0 

Consequently, a nontrivial solution is stable if and only if the real parts of 
both eigenvalues of the coefficient matrix in equations (33) and (34) are less 
than or equal to zero. Since equations (33) and (34) admit solutions of the 
form (al ,  ~ l )  oc eXr~ provided that 

X = --IX -- ~/I x2 + FIF2 (37) 

then the steady-state solutions are unstable if and only if 

FlFz > 0 (38) 

and otherwise they are stable. 
It follows from equation (15) that, when e ---) O, then 

u --) a cos(-~t  - �89 (39) 

where a and "y are given by 

a = [6 -+ (~2 + ~i)u21,:2 (40) 

tan- ' (-  _8~_g01x ) (41) 
~/ = \3aza  2 - 4oJ0or] 

Noting that equation (39) is the solution of equation (1) in the case of the 
steady state. Also, as t ---) oc, the solution is bounded. 
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4. THE GENERALIZED SYNCHRONIZATION METHOD 

For this method see Balbi (1973) and Elnaggar and Hamd-Allah (1982). 
When e = 0, the solution of  equation (1) can be written as 

u = a cos(toot + q~) (42) 

where a and q~ are constants. It follows from equation (42) that 

a = - tooa  sin(toot + q~) (43) 

When r 4: 0, we assume that the solution of  equation (1) is still given by 
equation (42), but with t ime-varying a and q~. Differentiating equation (42) 
with respect to t and recalling that a and q~ are functions of  t, we have 

a = - tooa  sin(toot + q~) + d cos(toot + q~) - a r  sin(toot + q~) (44) 

Comparing equation (44) with equation (43), we conclude that 

d cos(toot + q~) - a q  sin(toot + tp) = 0 (45) 

Differentiating equation (43) with respect to t, we obtain 

a = -too2a cos(toot + q~) - tooa sin(toot + q~) - tooar cos(toot + , )  (46) 

Substituting for u, u, a n d / / f r o m  equations (42), (43), and (46) into equation 
(1), we have 

d sin(toot + ~p) + a~o cos(toot + q~) 

~ 2 
= e -21xa sin(toot + q~) + cosZ(toot + q~) 

too 

Or2 a3 r a4 
+ COS3(toO / + ~) + COS4(toO t + q~) (47) 

toO toO 

~4a . ] 
+ cos(toot + qo) cos l i t  

too 

Solving equations (45) and (47) for a and ~ and using the trigonometric 
identities gives the following variational equations: 

2a t a  2 + Or3 a4 e~2a___~ 3 
d = e - I x a  + 8too sin t~o + 4too sin 2t~o + txa cos 2t~o 

4~1a 2 + 30t3 a4 or2 a3 0~3 a4 
+ 16too sin 3t~o + 8to-----o sin 4~o + ~ sm 5t~o 

ot4a sin(~J + 2t~o) - ~ ] + 4too ~ sin(~ - 2qJo) 
_1 

(48) 
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3ot2a 6ala  + 5ot3 a3 + 
8to o 

o~2 a2 
cos *o - Ix sin 2*0 + ~ cos 2*0 

+ 
4a la  + 5o~3a 3 

16~Oo 

R2 a2 0.3 a3 
cos 300 + ~ cos 4*0 + ~ cos 5 '0  

ot 4 
+ 7 cos(* + 2'o) + 

'~to o 

o~4 ] 
a4 cos(* - 2*0) + ~ o  cos * (49) 

4to o 

where 

*o = ~Oot + q, (50) 

* = l i t  (51) 

For principal parametric synchronization (i.e., l-I ~- 2OJo), then from 
equations (48) and (49) we retain only the constant terms and the terms of 
small frequency; thus we have 

FI(y, 0 = f(Y, t) = [_).,(y, t) ' Y = 

where 

a . 4  
fla(y, t) = - laA ~ o  s in[ (~  - 2O~o)t - 201 (52) 

3ot2 A2 Ol. 4 

fl,(Y, t) - 8to~- + 4~o o cos[(l) - 2~Oo)/- 20]  (53) 

and the terms of higher frequency are 

j~(y, t) = [fta(Y, t) / q 
Ill,p( Y, t) _1 

where 

fta(Y, t) = 
2otlA 2 + 0[3 A4 

8tOo 

a2A 3 
sin *o + ~ o  sin 2*0 + ~ cos 2*0 

+ 
4Otl A2 + 30r A4 

16OJo 

Or2 A3 0[3 A4 
sin 3*0 + ~ sin 4*0 + ~ sin 5*0 

alA 
sin(* + 2*0) 

4oo o 
+ (54) 
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fl~(Y, t) 6alA + 5a3A 3 a2A 2 
= 8tOo cos % - tx sin 20o + ~ cos 200 

4OtlA + 5ot3A 3 OL2 A2 
+ 16tO0 COS 30O + 8tO-----~ COS 40O 

OL3 A3 O~ 4 OL 4 
+ 16to----~ cos 50o + ~ cos(0 + 200) + ~ o  cos 0 

Then the reduced system to the first approximation takes the form 

= eFl(y, t) 

i.e., 

(55) 

R4A . } 
A = - e  OA + ~ s ln [ ( l l  - 2 ~ ) t  - 2 ~ ]  

= e~[3azAZ8~Oo + 4tOoet4 cos[(I'~ - 2COo)/- 2~]}  

(56) 

(57) 

Since t appears explicitly in equations (56) and (57), they are called a 
nonautonomous system. It is convenient to eliminate the explicit dependence 
on t, thereby transforming there equations into an autonomous system. This 
can be accomplished by introducing the new dependent variable ~/defined by 

~/ = (~  - 2COo)t - 2 ~  (58) 

Substituting equations (8) and (58) into equations (56) and (57), one obtains 
the autonomous system that describes the modulation of the amplitude and 
the phase: 

ot4~A 
A = -ela.A - - -  sin ~/ (59) 

4(o0 

1 3ot2 ~A2 ~ 4  ~ 
(e~ - ~/) - 8 ~  + 4co----o cos "y (60) 

For steady-state solutions, we put A = ~ = 0; then equations (59) and 
(60) become, when A v~ 0, 

--OL 4 . 
IX = ~ sm ~/ (61) 

1 3a2A 2 O~4 
- ~r - - -  cos "r (62) 
2 8to 0 4co o 
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response curves for subharmonic oscillations of order 1/2. 

Squaring equations (61) and (62) and adding the results gives the frequency- 
response equation: 

o.2 ~2 
9 a  2 A4 _ 3ot2_____~ A2 "4- ~2 + = 0 (63) 

64to 2 8o)0 4 16to02 

which is in full agreement with equation (20) obtained by using the method 
of multiple scales. 
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Fig. 1. C o n t i n u e d .  

Following a procedure similar to that in the preceding section, one 
obtains the following eigenvalues that determine the stability of the steady- 
state solutions: 

= --~.L + ~/~,,L 2 q'- F~F2 ( 6 4 )  

where 

F~ 
[�89 3~ 

= ca0 g 8o)0 ] (65) 

3ot2eao 
Fa - - -  (66) 

2(00 
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Fig. 1. Continued. 

which are in excellent agreement with equations (35) and (36) obtained by 
using the method of multiple scales. Note that in the case of the multiple 
scales we have T~ = et  and To = t. 

In order to establish the approximate amplitude and the approximate 
phase, we find the function GI(Y, t) as follows: 

I- q'~ t) ] 
G~(y, t) = L G ~ ( y  ' t) 
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where 

(~la(Y, t) = f flo(Y, t) dt 

_ ~ 2 a l A  2 + or3 A4 ot2A 3 ~J.A 
- - [ .  8~o cos t~o + 8to----~ cos 2+0 - 2tOo sin ZqJo 

4alA 2 + 3a3A 4 ot2A 3 ot3A 4 5t~o 
+ 48tOoZ cos 3t~ o + ~ cos 4+o + 8to----~- cos 

} + 4mo(ll + 2too) cos(~ + 2~o) (67) 
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Old(y, t) = f f l ,(Y, t) dt 

60-tA + 50-3 A3 IX 0-2 A2 
8too 2 sin 0o + - -  cos 200 + - -  sin 200 

2too 4o)0 

40-1A + 50-3 A3 0-2 A2 0-3 A3 
+ 48to~ sin 300 + ~ sin 40o + ~ sin 500 

0-4 0-4 
+ 4too(fl + 2too) sin(0 + 200) + ~ sin 0 (68) 

Then the amplitude and the phase to the first approximation are defined by 

a(t) = A + r t) 

f20-1A 2 + 0-3 A4 or2 A3 IxA 
= A - r 8~o cos 0o + 8to----~- cos 200 - ~ o  sin 200 

+ 40-1A 2 + 30-3A 4 
48o) 2 

0-2 A3 0-3 A4 
cos 300 + ~ cos 400 + ~ cos 500 

+ 
4too(fl + 2o)0)cos(0 + 200) (69) 

and 

qo(t) = ~ + ~O1,0(Y, t) 

f60-1A + 50-3 A3 Ix 0-z Az 
= ~ + ~ ~ sin 0o + ~ o  cos 200 + ~ sin 200 

+ 40-1A + 50-3 A3 

48O)o 2 
0-2 A2 0-3 A3 

sin 300 + ~ sin 400 + ~ sin 5too 

+ 0-4 

4too(~ + 2too) 
0-4 } sin(O + 200) + ~ sin 0 (70) 

Then the approximate solution is 

u(t) = a(t) cos[toot + q~(t)] 

= [A + ~G|a(Y, t)] cos[toot + �9 + ~(~I~(Y, t)] 
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i.e., 

u(t) = A cos t~o + e{ 
4~IA 2 + 3~3 A4 p.A 3~2A 3 

8 ~  + ~ o  sin ~o - 16~-~o cos ~o 

+ 
otlA 2 + 0/,3 A4 

6o,  
Or2 A3 Or4 A4 

cos 2~0 + ~ cos 3t~o + ~ cos 4t~o 

~ ~ cos(t~ - ~0)~ + O(E2) 
+ 21)(1) + 2tOo) cos (~ + ~o) - 4tOo-----~ (71) 

J 

which is in excellent agreement with the solution obtained by using the 
method of multiple scales and defined by equation (15). 

When e ---> 0, then lq ---> 2t%, a(t) --4 A, q~(t) --+ ~P, and 

u(t) --> A cos (21~t + alp) (72) 

where 

A = [6 - (62 + .q)1/2]1/2, (73) 

1 
= - ~  y (74) 

4Cooer 
6 - (75) 

3~2 

4 
"q = ~9et---- ~ (et] - 160~21x 2 - 4COo2tr 2) 

Y = tan-~ \3a2A 2 - 4O~oCr] 

(76) 

(77) 

These equations are in full agreement with the corresponding equations 
obtained by using the method of multiple scales in the preceding section. 

5. N U M E R I C A L  RESULTS AND DISCUSSION 

The frequency response equation (20) [which is in full agreement with 
equation (63)] is a nonlinear algebraic equation in the amplitude a. This 
equation is solved numerically by using the bisection method (Gerald, 1980). 
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The numerical results are represented by Figures 1A-1P, which represent the 
variation of the amplitude a with the detuning parameter (r for given values 
of the other parameters. In all figures, the solid lines represent stable solutions, 
while the dashed lines represent unstable solutions. 

From the geometry of the figures we observe that the frequency-response 
curves consist of two branches; the left one is stable and the right one is 
unstable. These curves are bent to the right; the bending leads to multivalued 
solutions and hence to a jump phenomenon. Also, there exist stable and 
unstable trivial solutions. As the coefficient of parametric ~4 excitation 

0 ,3  

0 
--10 

J 
- ---- UN~'TABLE" J ~ 

I -  I I 
50 

O 

0 . 3  

0 
- 1 0  

/a.~ I 
~ z - -  4 

/ l l  I I / / / / I  / ! / / /  

20 -%0 
0 

Fig. 1. Continued. 



Parametric Excitation of Subharmonic Oscillations 1937 

-~0  

r I 

a.,--5 
�9 -0 .01  / /  
~ S T ^ B L , E  ~ / 
------Ur,~TABLs . / . . *  

/ / . / / t  / 1 " ~  

I _ l  I 
2O rio 
O" 

6 2  

o -1( 

~t - -6  

z--O_01 
~ S T ~ t . E  
------ UNST~L.E 

/ f /  

t '  _f 
2'o s o  
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Fig. 1. Continued. 

increases while the other parameters remain constant, the branches of the 
response curve diverge from each other, and the region of unstable trivial 
solutions increases (Figs. 1A-1G). As the coefficient of the cubic term ~x 2 
increases while the other parameters remain constant, the solutions have a 
small magnitude (Figs. 1H-1M). As the coefficient of the damping term 
decreases while the other parameters remain constant, the response curves 
are not strongly affected and they shift slowly to the left, as shown in 
Figs. 1N-1P. 

Finally, we explain the jump phenomenon: for example, in Fig. 1E, as 
~y is reduced from a value corresponding to the point A, the amplitude remains 
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n 1o 

zero until the point B is reached. As cr is decreased further, a jump takes 
place from the point B to the point C. Then, as ~r decreases further, the 
amplitude decreases slowly. Also, we note that the region between the points 
B and D represents unstable trivial solutions, while for the other regions we 
have stable trivial solutions. 

6. SUMMARY AND CONCLUSION 

Two approximate methods (multiple scales and generalized synchroniza- 
tion) have been used to obtain a uniform first-order (two-term) expansion 
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for a one-degree-of-freedom system with quadratic, cubic, and quartic nonlin- 
earities under a parametric excitation. Two first-order ordinary differential 
equations which describe the modulation of the amplitudes and the phases 
were derived. Steady-state solutions (periodic solutions) and their stability 
were obtained. Numerical solutions were found by using the bisection method, 
and are plotted in Figs. IA-1P. The results obtained by the two methods are 
in excellent agreement. The following conclusions can be deduced from 
the analysis: 

1. The frequency-response curves consist of two branches; the left one 
is stable and the right one is unstable. These curves are bent to the right; the 
bending leads to multivalued solutions and hence to a jump phenomenon. 
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2. As the coefficient of  parametric excitation ol. 4 increases while the 
other parameters remain constant, the branches of the response curve diverge 
from each other, and the region of unstable trivial solutions increases. 

3. As the coefficient of cubic term or2 increases while the other parameters 
remain constant, the solutions have a small magnitude. 

4. As the coefficient of damping term ix decreases while the other 
parameters remain constant, the response curves are not strongly affected, 
and shift slowly to the left. 
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